Home Research Publications Biography Contact
Eri Yoshida Publications
Sustainability Engineering
- E. Yoshida, High-purity monomer recovery from commercial engineering plastics by vacuum pyrolysis depolymerization, RSC Sustain. 2024, 2, 3909-3915. https://doi.org/10.1039/D4SU00614C
- E. Yoshida, Utilization of CO2-captured poly(allylamine) as a polymer surfactant for nanoarchitecture production in a closed CO2 cycle, RSC Sustain. 2024, 2, 1837-1848. https://doi.org/10.1039/D4SU00121D
- E. Yoshida, Vacuum pyrolysis depolymerization of waste polystyrene foam into high-purity styrene using spirit lamp flame for convenient chemical recycling, RSC Sustain. 2023, 1, 2058-2065. https://doi.org/10.1039/d3su00207a
- E. Yoshida, CO2 capture-induced polymer complexes. Carbon Capture Sci. Technol. 2022, 2, 100038, 1-7. https://doi.org/10.1016/j.ccst.2022.100038
- E. Yoshida, CO2 capture-induced electrolytes using tertiary diamines. SCIREA J. Chem. 2020, 5(2), 12-29. http://www.scirea.org/journal/PaperInformation?PaperID=2980
- E. Yoshida, CO2-responsive behavior of polymer giant vesicles supporting hindered amine. Colloid Polym. Sci. 2019, 297, 661-666. https://doi.org/10.1007/s00396-019-04484-8
Artificial Models for Biomembranes
- E. Yoshida, Mechanisms of cup-shaped vesicle formation using amphiphilic diblock copolymer. OJPolym. Chem. 2022, 12, 43-54. https://doi.org/10.4236/ojpchem.2022.122003
- E. Yoshida, Polymer nanoarchitectonics for synthetic vesicles with human erythrocyte-like morphology transformation. Colloid Polym. Sci. 2022, 300, 497-508. https://doi.org/10.1007/s00396-022-04958-2
- E. Yoshida, Neuron-like tubule extension of giant polymer vesicles. Chem. Rep. 2021, 3(1), 195-202. https://doi.org/10.25082/CR.2021.01.004
- E. Yoshida, Giant vesicles of amphiphilic diblock copolymer with branched side chains. Colloid Surf. Sci. 2021, 6(1), 1-7. https://doi.org/10.11648/j.css.20210601.11
- E. Yoshida, Thermo-responsiveness of giant vesicles supporting hindered amines as reactive sites. Colloid Polym. Sci. 2020, 298, 1205-1214. https://doi.org/10.1007/s00396-020-04697-2
- E. Yoshida, Preparation of giant vesicles supporting hindered amine on their shells through photo living radical polymerization-induced self-assembly. J. Disp. Sci. Technol. 2020, 41(5), 763-770. https://doi.org/10.1080/01932691.2019.1617163
- E. Yoshida, Perforated giant vesicles composed of amphiphilic diblock copolymer: New artificial biomembrane model of nuclear envelope. Soft Matter 2019, 15, 9849-9857. https://doi.org/10.1039/C9SM01832H
- E. Yoshida, Morphological stability of worm-like vesicles consisting of amphiphilic diblock copolymer against external stress. Chem. Rep. 2019, 1(2), 102-107. https://doi.org/10.25082/CR.2019.02.006
- E. Yoshida, Preparation of giant vesicles containing quaternary ammonium salt of 2-(dimethylamino)ethyl methacrylate through photo nitroxide-mediated controlled/living radical polymerization-induced self-assembly. J. Polym. Res. 2018, 25(5), 109, 1-12. https://doi.org/10.1007/s10965-018-1509-3
- E. Yoshida, Morphology transformation of giant vesicles by a polyelectrolyte for an artificial model of a membrane protein for endocytosis. Colloid Surf. Sci. 2018, 3(1), 6-11. https://doi.org/10.11648/j.css.20180301.12
- E. Yoshida, Fabrication of anastomosed tubular networks developed out of fenestrated sheets through thermo responsiveness of polymer giant vesicles. ChemXpress 2017, 10(1):118, 1-11. https://www.tsijournals.com/articles/fabrication-of-anastomosed-tubular-networks-developed-out-of-fenestrated-sheets-through-thermo-responsiveness-of-polymer-giant-ves.html
- E. Yoshida, Worm-like vesicle formation by photo-controlled/living radical polymerization- induced self-assembly of amphiphilic poly(methacrylic acid)-block-poly(methyl methacrylate-random-methacrylic acid). Colloid Polym. Sci. 2016, 294(11), 1857-1863. https://doi.org/10.1007/s00396-016-3935-2
- E. Yoshida, Morphological changes in giant vesicles comprised of amphiphilic block copolymers by incorporation of ionic segments into the hydrophilic block chain. Cogent Chem. 2016, 2, 1212319, 1-16. https://doi.org/10.1080/23312009.2016.1212319
- E. Yoshida, Giant vesicles comprised of mixed amphiphilic poly(methacrylic acid)-block-poly(methyl methacrylate-random-methacrylic acid) diblock copolymers. Colloid Polym. Sci. 2015, 293, 3641-3648. https://doi.org/10.1007/s00396-015-3763-9
- E. Yoshida, Enhanced permeability of Rhodamine B into bilayers comprised of amphiphilic random block copolymers by incorporation of ionic segments in the hydrophobic chains. Colloid Polym. Sci. 2015, 293, 2437-2443. https://doi.org/10.1007/s00396-015-3679-4
- E. Yoshida, Fabrication of microvillus-like structure by photopolymerization-induced self-assembly of an amphiphilic random block copolymer. Colloid Polym. Sci. 2015, 293, 1841-1845. https://doi.org/10.1007/s00396-015-3600-1
- E. Yoshida, Morphological changes in polymer giant vesicles by intercalation of a segment copolymer as a sterol model in plasma membrane. Colloid Polym. Sci. 2015, 293, 1835-1840. https://doi.org/10.1007/s00396-015-3577-9
- E. Yoshida, PH response behavior of giant vesicles comprised of amphiphilic poly(methacrylic acid)-block-poly(methyl methacrylate-random-methacrylic acid). Colloid Polym. Sci. 2015, 293, 649-653. https://doi.org/10.1007/s00396-014-3482-7
- E. Yoshida, Morphology control of giant vesicles by composition of mixed amphiphilic random block copolymers of poly(methacrylic acid)-block-poly(methyl methacrylate-random- methacrylic acid). Colloid Polym. Sci. 2015, 293, 249-256. https://doi.org/10.1007/s00396-014-3403-9
- E. Yoshida, Morphology transformation of micrometer-sized giant vesicles based on physical conditions for photopolymerization-induced self-assembly. Supramol. Chem. 2015, 27, 274-280. https://doi.org/10.1080/10610278.2014.959014
- E. Yoshida, Hydrophobic energy estimation for giant vesicle formation by amphiphilic poly(methacrylic acid)-block-poly(alkyl methacrylate-random-methacrylic acid) random block copolymers. Colloid Polym. Sci. 2014, 292, 2555-2561. https://doi.org/10.1007/s00396-014-3297-6
- E. Yoshida, Fission of giant vesicles accompanied by hydrophobic chain growth through polymerization-induced self-assembly. Colloid Polym. Sci. 2014, 292, 1463-1468. https://doi.org/10.1007/s00396-014-3216-x
- E. Yoshida, Morphology control of giant vesicles by manipulating hydrophobic-hydrophilic balance of amphiphilic random block copolymers through polymerization-induced self-assembly. Colloid Polym. Sci. 2014, 292, 763-769 (2014). https://doi.org/10.1007/s00396-013-3154-z
- E. Yoshida, Giant vesicles prepared by nitroxide-mediated photo-controlled/living radical polymerization-induced self-assembly. Colloid Polym. Sci. 2013, 291, 2733-2739. https://doi.org/10.1007/s00396-013-3056-0
Photo-Controlled/Living Radical Polymerization
- E. Yoshida, Photo nitroxide-mediated living radical polymerization of hindered amine-supported methacrylate. J. Res. Update Polym. Sci. 2018, 7(2), 21-28. https://doi.org/10.6000/1929-5995.2018.07.02.1
- E. Yoshida, Crosslinking effect of hydrophobic cores on morphology of giant vesicles formed by amphiphilic random block copolymers. Colloid Polym. Sci. 2015, 293, 1275-1280. https://doi.org/10.1007/s00396-015-3519-6
- E. Yoshida, Elucidation of acceleration mechanisms by a photosensitive onium salt for nitroxide-mediated photocontrolled/living radical polymerization. OJPChem 2014, 4, 47-55. http://dx.doi.org/10.4236/ojpchem.2014.43006
- E. Yoshida, Nitroxide-mediated photo-controlled/living radical polymerization of methacrylic acid. Open J. Polym. Chem. 2013, 3, 16-22. https://doi.org/10.4236/ojpchem.2013.31004
- E. Yoshida, Selective controlled/living photoradical polymerization of glycidyl methacrylate, using a nitroxide mediator in the presence of a photosensitive triarylsulfonium salt. Polymers 2012, 4, 1580-1589. https://doi.org/10.3390/polym4031580
- E. Yoshida, Effects of illuminance and heat rays on photo-controlled/living radical polymerization mediated by 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl. ISRN Polym. Sci. 2012, 102186, 1-6. https://doi.org/10.5402/2012/102186
- E. Yoshida, Photo-controlled/living radical polymerization mediated by 2,2,6,6-tetramethylpiperidine-1-oxyl in inert atmospheres. Colloid Polym. Sci. 2012, 290, 1087-1091. https://doi.org/10.1007/s00396-012-2668-0
- E. Yoshida, Aqueous photo-living radical polymerization of sodium methacrylate using a water-soluble nitroxide mediator. ISRN Polym. Sci. 2012, 630478. https://doi.org/10.5402/2012/630478
- E. Yoshida, Photo-controlled/living radical polymerization of 2-(dimethylamino)ethyl methacrylate using 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl as a mediator. Colloid Polym. Sci. 2012, 290, 965-969. https://doi.org/10.1007/s00396-012-2641-y
- E. Yoshida, Photo-controlled/living radical polymerization of tert-butyl methacrylate in the presence of a photo-acid generator using a nitroxide mediator. Colloid Polym. Sci. 2012, 290, 661-665. https://doi.org/10.1007/s00396-012-2605-2
- E. Yoshida, Controlled photoradical polymerization mediated by 2,2,6,6-tetramethyl- piperidine-1-oxyl. Polymers 2012, 4(2), 1125-1156. https://doi.org/10.3390/polym4021125
- E. Yoshida, Nitroxide-mediated photo-controlled/living radical dispersion polymerization of methyl methacrylate. Colloid Polym. Sci. 2011, 289, 1625-1630. https://doi.org/10.1007/s00396-011-2487-8
- E. Yoshida, Nitroxide-mediated photo-controlled/living radical polymerization of ethyl acrylate. Colloid Polym. Sci. 2011, 289, 1127-1132. https://doi.org/10.1007/s00396-011-2435-7
- E. Yoshida, Graft copolymerization of methyl methacrylate on polystyrene backbone through nitroxide-mediated photo-living radical polymerization. Colloid Polym. Sci. 2011, 289, 837-841. https://doi.org/10.1007/s00396-011-2385-0
- E. Yoshida, Nitroxide-mediated photo-living radical polymerization of methyl methacrylate in the presence of (h6-benzene)(h5-cyclopentadienyl)FeII hexafluorophosphate. Colloid Polym. Sci. 2010, 288, 1745-1749. https://doi.org/10.1007/s00396-010-2292-2
- E. Yoshida, Nitroxide-mediated photo-living radical polymerization of methyl methacrylate in solution. Colloid Polym. Sci. 2010, 288, 1639-1643. https://doi.org/10.1007/s00396-010-2287-6
- E. Yoshida, Stability of growing polymer chain ends for nitroxide-mediated photo-living radical polymerization. Colloid Polym. Sci. 2010, 288, 1027-1030. https://doi.org/10.1007/s00396-010-2230-x
- E. Yoshida, Effects of initiators and photo-acid generators on nitroxide-mediated photo-living radical polymerization of methyl methacrylate. Colloid Polym. Sci. 2010, 288, 901-905. https://doi.org/10.1007/s00396-010-2220-z
- E. Yoshida, Effect of azoinitiators on nitroxide-mediated photo-living radical polymerization of methyl methacrylate. Colloid Polym. Sci. 2010, 288, 341-345. https://doi.org/10.1007/s00396-009-2163-4
- E. Yoshida, Nitroxide-mediated photo-living radical polymerization of methyl methacrylate using (4-tert-butylphenyl)diphenylsulfonium triflate as a photo-acid generator. Colloid Polym. Sci. 2010, 288, 239-243. https://doi.org/10.1007/s00396-009-2161-6
- E. Yoshida, Nitroxide-mediated photo-living radical polymerization of vinyl acetate. Colloid Polym. Sci. 2010, 288, 73-78. https://doi.org/10.1007/s00396-009-2123-z
- E. Yoshida, Photo-living radical polymerization of methyl methacrylate using alkoxyamine as an initiator. Colloid Polym. Sci. 2010, 288, 7-13. https://doi.org/10.1007/s00396-009-2113-1
- E. Yoshida, Synthesis of poly(methyl methacrylate)-block-poly(tetrahydrofuran) by photo- living radical polymerization using a 2,2,6,6-tetramethylpiperidine-1-oxyl macromediator. Colloid Polym. Sci. 2009, 287, 1417-1424. https://doi.org/10.1007/s00396-009-2105-1
- E. Yoshida, Photo-living radical polymerization of methyl methacrylate by 2,2,6,6-tetra- methylpiperidine-1-oxyl in the presence of a photo-acid generator. Colloid Polym. Sci. 2009, 287, 767-772. https://doi.org/10.1007/s00396-009-2023-2
- E. Yoshida, Photo-living radical polymerization of methyl methacrylate by a nitroxide mediator. Colloid Polym. Sci. 2008, 286, 1663-1666. https://doi.org/10.1007/s00396-008-1930-y
Stimuli-Induced Micellization
- E. Yoshida, Electrostatic cross-linking-induced self-assembly of poly(allylamine hydrochloride) using Allura Red AC. Colloid Polym. Sci. 2013, 291, 993-1000. https://doi.org/10.1007/s00396-012-2821-9
- E. Yoshida, Self-assembly of poly(allylamine hydrochloride) through electrostatic interaction with sodium dodecyl sulfate. Colloid Polym. Sci. 2010, 288, 1321-1325. https://doi.org/10.1007/s00396-010-2255-1
- E. Yoshida, T. Ema, Micelle formation of polystyrene-block-poly(4-tert-butoxystyrene) in hexane. Colloid Polym. Sci. 2011, 289, 919-923. https://doi.org/10.1007/s00396-011-2411-2
- E. Yoshida, S. Kuwayama, S. Kawaguchi, Photo-induced micellization of poly(4-pyridine-methoxymethylstyrene)-block-polystyrene using a photo-acid generator. Colloid Polym. Sci. 2010, 288, 91-95. https://doi.org/10.1007/s00396-009-2140-y
- E. Yoshida, S. Kuwayama, Photo-induced micellization of block copolymers: Polymers 2010, 2(4), 623-648. http://dx.doi.org/10.3390/polym2040623
- E. Yoshida, Control of micellization induced by disproportionation of 2,2,6,6-tetramethylpiperidine-1-oxyl supported on side chains of a block copolymer. Colloid Polym. Sci. 2009, 287, 1365-1368. https://doi.org/10.1007/s00396-009-2111-3
- E. Yoshida, T. Naito, Reversible control of self-assembly of a diblock copolymer supporting Wittig reagent. Colloid Polym. Sci. 2009, 287, 1057-1063. https://doi.org/10.1007/s00396-009-2064-6
- E. Yoshida, S. Kuwayama, Reversible control of primary and secondary self-Assembly of poly(4-allyloxystyrene)-block-polystyrene. Res. Lett. Phys. Chem. 2009, 146849, 1-5. https://doi.org/10.1155/2009/146849
- E. Yoshida, S. Kuwayama, Micelle formation induced by photo-Claisen rearrangement of poly(4-allyloxystyrene)-block-polystyrene. Colloid Polym. Sci. 2009, 287, 789-793. https://doi.org/10.1007/s00396-009-2029-9
- E. Yoshida, S. Kuwayama, Photolysis-induced micellization of a poly(4-tert-butoxystyrene)- block-polystyrene diblock copolymer. Colloid Polym. Sci. 2008, 286, 1621-1627. https://doi.org/10.1007/s00396-008-1937-4
- E. Yoshida, T. Naito Block copolymer micelles with dye loaded on their shells or cores. Colloid Polym. Sci. 2008, 286, 1203-1207. https://doi.org/10.1007/s00396-008-1879-x
- E. Yoshida, T. Tanaka, Reduction-induced micellization of a diblock copolymer containing stable nitroxyl radicals. Colloid Polym. Sci. 2008, 286, 827-830. https://doi.org/10.1007/s00396-008-1844-8
- E. Yoshida, S. Kuwayama, Micelle formation induced by photolysis of a poly(tert-butoxy- styrene)-block-polystyrene diblock copolymer. Colloid Polym. Sci. 2007, 285, 1287-1291. https://doi.org/10.1007/s00396-007-1703-z
- E. Yoshida, H. Ogawa, Micelle formation induced by disproportionation of stable nitroxyl radicals supported on a diblock copolymer. J. Oleo Sci. 2007, 56, 297-302. https://doi.org/10.5650/jos.56.297
- E. Yoshida, TEM observation of nonamphiphilic copolymer micelles. Colloid Polym. Sci. 2007, 285, 941-945. https://doi.org/10.1007/s00396-007-1652-6
- E. Yoshida, M. Ohta, Preparation of micelles with azo dye and UV absorbent at their cores or coronas using nonamphiphilic diblock copolymers. Colloid Polym. Sci. 2007, 285, 431-439. https://doi.org/10.1007/s00396-006-1603-7
- E. Yoshida, T. Tanaka, Oxidation-induced micellization of a diblock copolymer containing stable nitroxyl radicals. Colloid Polym. Sci. 2006, 285, 135-144. https://doi.org/10.1007/s00396-006-1529-0
- E. Yoshida, M. Ohta, Micelle formation of a diblock copolymer having pyridine as pendant groups by carboxylic acids in nonselective solvents. Colloid Polym. Sci. 2006, 284, 718-724. https://doi.org/10.1007/s00396-005-1411-5
- E. Yoshida, M. Tanaka, T. Takata, Direct preparation of core cross-linked micelles in a nonselective solvent. Colloid Polym. Sci. 2005, 284, 51-57. https://doi.org/10.1007/s00396-005-1337-y
- E. Yoshida, S. Itsuno, Thermodynamics and kinetics on micelle formation of a nonamphiphilic poly(vinylphenol)-block-polystyrene by a,w-diamine. Colloid Polym. Sci. 2005, 284, 19-25. https://doi.org/10.1007/s00396-005-1325-2
- E. Yoshida, M. Ohta, Preparation of micelles having a UV absorbent at their coronas using a 'nonamphiphilic' diblock copolymer. Designed Monomers and Polymers 2005, 8(5), 501-513. https://doi.org/10.1163/1568555054937908
- E. Yoshida, Y. Terada, Micelle formation of a nonamphiphilic poly(vinylphenol)-block- polystyrene diblock copolymer in ethyl acetate. Colloid Polym. Sci. 2005, 283, 1190-1196. https://doi.org/10.1007/s00396-005-1310-9
- E. Yoshida, M. Tanaka, T. Takata, Self-assembly control of a pyridine-containing diblock copolymer by perfluorinated counter anions during salt-induced micellization. Colloid Polym. Sci. 2005, 283, 1100-1107. https://doi.org/10.1007/s00396-004-1260-7
- E. Yoshida, M. Ohta, Preparation of light-stable micelles with azo dyes from a nonamphiphilic random block copolymer. Colloid Polym. Sci. 2005, 283, 872-879. https://doi.org/10.1007/s00396-004-1229-6
- E. Yoshida, M. Ohta, Y. Terada, Reversible control of micellization induced by hydrogen bond crosslinking for a nonamphiphilic diblock copolymer with an a,w-diamine. Polym. Adv. Technol. 2005, 16, 183-188. https://doi.org/10.1002/pat.569
- E. Yoshida, M. Ohta, Preparation of micelles with azobenzene at their coronas or cores from 'nonamphiphilic' diblock copolymers. Colloid Polym. Sci. 2005, 283, 521-531. https://doi.org/10.1007/s00396-004-1179-z
- E. Yoshida, A. Hironaka, Micelle formation of 'nonamphiphilic' poly(vinylphenol-co-styrene) random copolymers by hydrogen bond cross-linking by a,w--diamine. Polym. J. 2004, 36, 248-254. https://doi.org/10.1295/polymj.36.248
- E. Yoshida, Control of micellar size and critical micelle concentration for nonamphiphilic poly(vinyl phenol)-block-polystyrene diblock copolymers. Polym. J. 2003, 35, 965-971. https://doi.org/10.1295/polymj.35.965
- E. Yoshida, Micellization of random block copolymers in a nonselectove solvent using a,w--diamine. Polym. J. 2003, 35, 484-490. https://doi.org/10.1295/polymj.35.484
- E. Yoshida, S. Kunugi, Micelle formation of nonamphiphilic diblock copolymers through noncovalent bond crosslinking. Macromolecules 2002, 35, 6665-6669. https://doi.org/10.1021/ma020275u
- E. Yoshida, S. Kunugi, Micelle formation of poly(vinyl phenol)-block-polystyrene through hydrogen bond crosslinking by a,w-diamine. J. Polym. Sci., Part A: Polym. Chem. Ed. 2002, 40, 3063-3067. https://doi.org/10.1002/pola.10399
Supercritical CO2 Technologies
- E. Yoshida, A. Mineyama, Morphology control of poly[2-(perfluorooctyl)ethyl acrylate-co- tert-butyl acrylate] by pressure in supercritical carbon dioxide. Colloid Polym. Sci. 2012, 290, 183-187. https://doi.org/10.1007/s00396-011-2536-3
- E. Yoshida, Preparation of micro- and nanospheres with superamphiphobic surfaces. Colloid Polym. Sci. 2012, 290, 525-530. https://doi.org/10.1007/s00396-011-2570-1
- E. Yoshida, Nanospheres prepared by self-assembly of random copolymers in supercritical carbon dioxide. Int. J. Polym. Sci. 2012, 592759, 1-16. http://dx.doi.org/10.1155/2012/592759
- E. Yoshida, Synthesis of functional polymer microspheres through polymer self-assembly in supercritical carbon dioxide (in Japanese), Coating Technology, 2010, 45(2), 77-88.
- E. Yoshida, Synthesis of polyhedral particles by dispersion polymerization in supercritical carbon dioxide. Colloid Polym. Sci. 2008, 286, 1435-1442. https://doi.org/10.1007/s00396-008-1914-y
- E. Yoshida, A. Mineyama, Synthesis of spherical particles by self-assembly of poly[2-(perfluorooctyl)ethyl acrylate-co-acrylic acid] in supercritical carbon dioxide. Colloid Polym. Sci. 2008, 286, 975-981. https://doi.org/10.1007/s00396-008-1857-3
- E. Yoshida, Synthesis of polystyrene microspheres by dispersion polymerization in supercritical carbon dioxide using a poly(dimethylsiloxane)-based macroazoinitiator. Colloid Polym. Sci. 2008, 286, 351-355. https://doi.org/10.1007/s00396-007-1786-6
- E. Yoshida, H. Imamura, Synthesis of poly[2-(perfluorooctyl)ethyl acrylate-co-poly(ethylene glycol) methacrylate] and its control of enzyme activity in supercritical carbon dioxide. Colloid Polym. Sci. 2007, 285, 1463-1470. https://doi.org/10.1007/s00396-007-1706-9
- E. Yoshida, A. Nagakubo, Superhydrophobic surfaces of microspheres obtained by self-assembly of poly[2-(perfluorooctyl)ethyl acrylate-ran-2-(dimethylamino)ethyl acrylate] in supercritical carbon dioxide. Colloid Polym. Sci. 2007, 285, 1293-1297. https://doi.org/10.1007/s00396-007-1712-y
- E. Yoshida, A. Nagakubo, Convenient synthesis of microspheres by self-assembly of random copolymers in supercritical carbon dioxide. Colloid Polym. Sci. 2007, 285, 441-447. https://doi.org/10.1007/s00396-006-1602-8
- E. Yoshida, S. L. Wells, J. M. DeSimone, Light scattering studies of poly(tert-butyl methacrylate)-b-poly(1,1-dihydroperfluorooctyl methacrylate) diblock copolymers in liquid and supercritical carbon dioxide: Towards reversible control of the self-assembly (in Japanese). Kobunshi Rombunshu 2001, 58, 507-513. https://doi.org/10.1295/koron.58.507
Thermal Controlled/Living Radical Polymerization
- E. Yoshida, K. Takeda, Living radical polymerization by biradical compounds of tetramethyl- piperidine-1-oxyl. Polym. J. 2001, 33, 590-596. https://doi.org/10.1295/polymj.33.590
- E. Yoshida, S. Tanimoto, Tetramethylpiperidine-1-oxyl-mediated polymerization of styrene using a macroazoinitiator of poly(ethylene oxide). Polym. J. 2001, 33, 221-226. https://doi.org/10.1295/polymj.33.221
- E. Yoshida, Macromolecular design by living radical polymerization using stable nitroxide (in Japanese). Kobunshi Rombunshu 2000, 57, 484-497. https://doi.org/10.1295/koron.57.484
- E. Yoshida, T. Terazono, Synthesis of model A5B1 heteroarm star copolymers by TEMPO-mediated living radical polymerization. Polym. J. 1999, 31, 621-624. https://doi.org/10.1295/polymj.31.621
- E. Yoshida, Y. Takiguchi, Synthesis of a random block copolymer comprising poly(styrene-ran-p-methoxystyrene) and poly(styrene-ran-p-tert-butoxystyrene) by TEMPO-mediated living radical polymerization. Polym. J. 1999, 31, 429-434. https://doi.org/10.1295/polymj.31.429
- E. Yoshida, M. Nakamura, Synthesis of poly(ethylene adipate) with a stable nitroxyl radical at both chain ends, and applications to a counter radical for living radical polymerization. Polym. J. 1998, 30, 915-920. https://doi.org/10.1295/polymj.30.915
- E. Yoshida, A. Sugita, Synthesis of poly(styrene-b-tetrahydrofuran-b-styrene) triblock copolymers by trans-formation from living cationic into living radical polymerization using 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl as a transforming agent. J. Polym. Sci., Part A: Polym. Chem. Ed. 1998, 36, 2059-2068. https://doi.org/10.1002/(SICI)1099-0518(19980915)36:12<2059::AID-POLA12>3.0.CO;2-5
- E. Yoshida, Y. Osagawa, Synthesis of poly(e-caprolactone) with a stable nitroxyl radical as an end-functional group, and its application to a counter radical for living radical polymerization. Macromolecules 1998, 31, 1446-1453. https://doi.org/10.1021/ma970944h
- E. Yoshida, T. Fujii, Living radical polymerization of methylstyrenes by a stable nitroxyl radical, and stability of the aminoxy chain end. J. Polym. Sci., Part A: Polym. Chem. Ed. 1998, 36, 269-276. https://doi.org/10.1002/(SICI)1099-0518(19980130)36:2<269::AID-POLA9>3.0.CO;2-M
- E. Yoshida, S. Tanimoto, Living radical polymerization of styrene by a stable nitroxyl radical and macroazo-initiator. Macromolecules 1997, 30, 4018-4023. https://doi.org/10.1021/ma9700892
- E. Yoshida, T. Fujii, Synthesis of well-defined polychlorostyrenes by living radical polymerization with 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl. J. Polym. Sci., Part A: Polym. Chem. Ed. 1997, 35, 2371-2378. https://doi.org/10.1002/(SICI)1099-0518(19970915)35:12<2371::AID-POLA6>3.0.CO;2-Y
- E. Yoshida, Y. Okada, Living radical polymerization of styrene in the presence of 4-hydroxy-2,2,6,6-tetramethyl-piperidine-1-oxyl, and radical transformation of the resulting polymers by other radicals. Bull. Chem. Soc. Jpn. 1997, 70, 275-281. https://doi.org/10.1246/bcsj.70.275
- E. Yoshida, Y. Okada, Control of molecular weight by living radical polymerization with a nitroxyl radical. J. Polym. Sci., Part A: Polym. Chem. Ed. 1996, 34, 3631-3635. https://doi.org/10.1002/(SICI)1099-0518(199612)34:17<3631::AID-POLA20>3.0.CO;2-E
- E. Yoshida, A. Sugita, Synthesis of poly(tetrahydrofuran) with a nitroxyl radical at the chain end, and its application to living radical polymerization. Macromolecules 1996, 29, 6422-6426. https://doi.org/10.1021/ma9605210
- E. Yoshida, Synthesis of a well-defined polybromostyrene by living radical polymerization with a nitroxyl radical. J. Polym. Sci., Part A: Polym. Chem. Ed. 1996, 34, 2937-2943. https://doi.org/10.1002/(SICI)1099-0518(199610)34:14<2937::AID-POLA11>3.0.CO;2-L
Others
- E. Yoshida, T. Tsuchiya, K. Katayama, Synthesis of polymers with adamantane amino derivatives as pendant groups. Polym. J. 1999, 31, 32-36. https://doi.org/10.1295/polymj.31.32
- E. Yoshida, Bis-1,3-dithiolium salts as initiators for the cationic polymerization of vinyl monomers. Polym. J. 1996, 28, 929-932. https://doi.org/10.1295/polymj.28.929
- L. Hu, H. Shinoda, E. Yoshida, T. Kitao, Hydrolysates of Nylon 6/polylactide blend (in Japanese). Kobunshu Rombunshu 1995, 52, 114-120. https://doi.org/10.1295/koron.52.114
- Y. Makimura, E. Yoshida, T. Kitao, Melt grafting of polydimethylsiloxane onto poly(methyl methacrylate) using twin extruder (in Japanese). Processing 1997, 9, 299-305. https://doi.org/10.4325/seikeikakou.9.299
- Y. Makimura, E. Yoshida, T. Kitao, Polycarbonate alcoholysis with benzophenone derivative in twin extruder (in Japanese). Kobunshi Rombunshu 1997, 54, 79-86. https://doi.org/10.1295/koron.54.79
- Y. Makimura, E. Yoshida, T. Kitao, Modification of polycarbonate terminals with benzophenone derivative via transesterification. Polym. J. 1997, 29, 128-133. https://doi.org/10.1295/polymj.29.128
- T. Tada, K. Mano, E. Yoshida, N. Tanaka, S. Kunugi, SH-group introduction to the N-terminal of subtilisin and preparation of immobilized and dimeric enzymes. Bull. Chem. Soc. Jpn. 2002, 75, 2247-2251. https://doi.org/10.1246/bcsj.75.2247
- T. Takata, Y. Tsujino, S. Nakanishi, K. Nakamura, E. Yoshida, T. Endo, Electrophilic 1,2-addition of oxoammonium salts to olefins. Chem. Lett. 1999, 937-938. https://doi.org/10.1246/cl.1999.937
- E. Yoshida, T. Takata, T. Endo, T. Ishizone, A. Hirao, S. Nakahama, Convenient synthesis of bis-1,3-dithiolium salt, the stable radical cation by oxidation with the oxoaminium salt. Chem. Lett. 1994, 1827-1828. https://doi.org/10.1246/cl.1994.1827
- E. Yoshida, T. Ishizone, A. Hirao, S. Nakahama, T. Takata, T. Endo, Synthesis of polystyrene having an aminoxy terminal by the reactions of living polystyrene with an oxoaminium salt and with the corresponding nitroxyl radical. Macromolecules 1994, 27, 3119-3124. https://doi.org/10.1021/ma00090a001
- E. Yoshida, T. Takata, T. Endo, Convenient synthesis of polymers containing terminal aldehyde and ketone moieties by selective oxidation of polymeric terminal diols with oxoaminium salt. Makromol. Chem. 1993, 194, 2507-2515. https://doi.org/10.1002/macp.1993.021940909
- E. Yoshida, K. Nakamura, T. Takata, T. Endo, Oxoaminium salts as initiators for cationic polymerization of vinyl monomers. J. Polym. Sci., Part A: Polym. Chem. Ed. 1993, 31, 1505-1512. https://doi.org/10.1002/pola.1993.080310620
- E. Yoshida, M. Yamaguchi, T. Takata, T. Endo, Oxidation of poly(vinyl alcohol) by oxoammonium salt. Makromol. Chem. 1993, 194, 1307-1314. https://doi.org/10.1002/macp.1993.021940505
- E. Yoshida, T. Takata, T. Endo, A novel and convenient method for synthesis of formylated polystyrene via oxidative scission from poly[(methoxymethyl)styrene] mediated by a nitroxyl radical. Macromolecules 1993, 26, 554-556. https://doi.org/10.1021/ma00055a023
- E. Yoshida, T. Takata, T. Endo, Oxidation of polymeric terminal diols with iron(III) or copper(II) salts mediated by the nitroxyl radical. Macromolecules 1992, 25, 7282-7285. https://doi.org/10.1021/ma00052a032
- E. Yoshida, T. Takata, T. Endo, Efficient and selective oxidation of a polymeric terminal diol with Cu(II) mediated by nitroxyl radical. J. Polym. Sci., Part A: Polym. Chem. Ed. 1992, 30, 1193-1197. https://doi.org/10.1002/pola.1992.080300627
Yoshida Lectures (International)
- [Invited] Electrolytes from carbonic acid for CO2 capture. E. Yoshida, The International Conference on Materials Science, Engineering & Technology (Singapore, 2024).
- Artificial biomembrane models using giant vesicles of amphiphilic diblock copolymers. E. Yoshida, Polymers-2023 (San Francisco, USA, 2023).
- Vacuum pyrolysis of waste plastics into high-purity monomers using spirit lamp flame for convenient chemical recycling. E. Yoshida, Polymer Connect (Valencia, Spain, 2023).
- Chemical recycling and upcycling of waste plastics. E. Yoshida, ACS Fall 2023, Division of Environmental Chemistry, Paper ID: 3919906 (San Francisco, USA, 2023).
- Polymer giant vesicles as artificial models for dynamic biomembranes. E. Yoshida, ACS Spring 2023, Paper ID: 3803846 (Indianapolis, USA, 2023).
- Carbonic acid capture-induced self-assembly into polymer materials. E. Yoshida, International Conference on Polymer Science and Engineering (Los Angeles, USA, 2022).
- CO2 capture-based material design. E. Yoshida, ACS Fall 2022, Division of Environmental Chemistry, Paper ID: 3727257 (Chicago, USA, 2022).
- [Plenary] Artificial biomembrane models using polymer giant vesicles consisting of amphiphilic diblock copolymers: E. Yoshida, Global Biopolymers & Polymer Chemistry Congress (Las Vegas, USA, 2019).
- [Invited] Artificial biomembrane models using giant vesicles prepared by photo NMP- induced self-assembly: E. Yoshida, The 258th Am. Chem. Soc. Fall National Meeting, Paper ID: 89, 1 (San Diego, USA, 2019).
- [Plenary] Polymer giant vesicles as artificial models of biomembrane: E. Yoshida, Annual Congress on Smart Materials 2019 (Prague, Czech Republic, 2019).
- [Invited] Worm-like vesicles prepared by photo nitroxide-mediated controlled/living radical polymerization-induced self-assembly: E. Yoshida, 4th International Conference on Polymer Chemistry (Stockholm, Sweden, 2018).
- [Invited] Giant vesicles supporting amino groups on hydrophilic shells prepared by photo- controlled/living radical polymerization-induced self-assembly of amphiphilic block copolymers: E. Yoshida, 3rd Edition of International Conference and Exhibition on Polymer Chemistry (Vienna, Austria, 2018).
- [Invited] Artificial biomembrane models using polymer giant vesicles: Morphological changes and enhanced permeability of the vesicles by incorporation of ionic segments into the polymer amphiphiles: E. Yoshida, 3rd International Conference on Chemical Engineering (Chicago, USA, 2017).
- Stimulus-responsive behavior of giant vesicles consisting of amphiphilic diblock copolymers. E. Yoshida, The 253rd Am. Chem. Soc. National Meeting (San Francisco, USA, 2017).
- [Invited] Artificial biomembrane models using giant vesicles formed by self-assembly of amphiphilic block copolymers: E. Yoshida, Energy Materials on Nanotechnology Meeting on
- Polymer 2017 (Auckland, New Zealand, 2017).
- [Invited] Giant vesicles prepared by photopolymerization-induced self-assembly of amphiphilic random block copolymers. E. Yoshida, 6th Asian Conference on Colloid and Interface Science (Nagasaki, Japan, 2015).
- Artificial biomembrane models using giant vesicles comprised of amphiphilic random block copolymers. E. Yoshida, The 250th Am. Chem. Soc. National Meeting (Boston, USA, 2015).
- [Invited] Micrometer-sized giant vesicles composed of amphiphilic random block copolymers prepared by photopolymerization-induced self-assembly: E. Yoshida, 5th World Congress on Bioavailability and Bioequivalence, Pharmaceutical R & D Summit (Baltimore, USA, 2014).
- [Invited] Giant vesicles prepared by nitroxide-mediated photo-controlled/ living radical polymeri-zation-induced self-assembly, E. Yoshida, 2nd International Conference and Exhibition on Materials Science & Engineering (Las Vegas, USA, 2013).
- Morphology control of giant vesicles by hydrophobic-hydrophilic balance of amphiphilic random block copolymers. E. Yoshida, The 247th Am. Chem. Soc., National Meeting, Div. Colloid Surf. Chem. Paper ID: 818 (Texas, USA, 2013).
- Synthesis of poly(methyl methacrylate)-block-poly(tetrahydrofuran) through photo-living radical polymerization mediated by 2,2,6,6-tetramethylpiperidine-1-oxyl supported on a polymer chain end. E. Yoshida, The 237th Am. Chem. Soc. National Meeting, Polym. Prepr. 50(1), 219-220 (Salt Lake City, USA, 2009).
- Photo-living radical polymerization of methyl methacrylate by a nitroxide mediator. E. Yoshida, The 236th Am. Chem. Soc. National Meeting, Polym. Prepr. 49(2), 232-233 (Philadelphia, USA, 2008).
- Superhydrophobic surfaces of nanospheres obtained by self-assembly of random copolymers in supercritical carbon dioxide. E. Yoshida, A. Nagakubo, The 236th Am. Chem. Soc. National Meeting, Division of Colloid & Surface Chemistry, Paper ID: 50 (Philadelphia, USA, 2008).
- [Invited] Micelle formation induced by photolysis of a poly(tertbutoxystyrene)-block- polystyrene diblock copolymer, E. Yoshida, S. Kuwayama, The 12nd World Multi-Conference on Systemics, Cybernetics and Informatics (Orlando, USA, 2008).
- [Invited] Indirect micelle formation of block copolymers. E. Yoshida, The Seminar of the Chemical Department at University of North Carolina, Chapel Hill (Chapel Hill, USA, 2008).
- Micelle formation induced by photolysis of a poly(4-tert-butoxystyrene)-block-polystyrene diblock copolymer. E. Yoshida, S. Kuwayama, The 82nd ACS Colloid & Surface Science Symposium, Paper ID 146 (North Carolina, USA, 2008).
- [Invited] Block copolymer micellization induced by electron transfer. E. Yoshida, International Symposium on Advanced Macromolecules and Nano-materials with Precisely Designed Architectures (Sapporo, Japan, 2007).
- Control of enzyme activity by fluoro-based polymeric surfactant in supercritical carbon dioxide. H. Imamura, E. Yoshida, 1st Asian-Oceanian Conference on Green and Sustainable Chemistry, (Tokyo, Japan, 2007).
- Synthesis of nanospheres by self-assembly of fluoro-based polymeric surfactants in supercritical carbon dioxide. A. Mineyama, E. Yoshida, 1st Asian-Oceanian Conference on Green and Sustainable Chemistry (Tokyo, Japan, 2007).
- [Invited] Convenient synthesis and superhydrophobic surfaces of macrospheres by self- assembly of random copolymers in supercritical carbon dioxide. E. Yoshida, Japan-Taiwan Joint Symposium on Innovations on Frontier Nanomaterials, (Hakone, Japan, 2007).
- [Invited] Micelle formation of a TEMPO-supported diblock copolymer. E. Yoshida, The 10th World Multi-Conference on Systemics, Cybernetics and Informatics (Orlando, USA, 2006).
- [Invited] Oxidation-induced micellization of a diblock copolymer containing stable nitroxyl radicals. E. Yoshida, T. Tanaka, The 231st Am. Chem. Soc. National Meeting, Colloid Surf. Chem. Div., Paper ID: 451 (Atlanta, USA, 2006).
- [Invited] Micelle formation of 'nonamphiphilic' block copolymers. E. Yoshida, International Symposium on Advanced Polymers via Macromolecular Engineering (Istanbul, Turkey, 2005).
- Micelle formation of a nonamphiphilic poly(vinylphenol)-block-polystyrene by a,w-diamine: thermodynamic and kinetic studies. E. Yoshida, S. Itsuno, Y. Terada, 229th ACS National Meeting, Polymeric Materials: Science & Engineering Prepr. 92(1), 450-451 (San Diego, USA, 2005).
- Control of self-assembly by perfluorinated counter anions in salt-induced micellization of a pyridine-containing diblock copolymer. E. Yoshida, M. Tanaka, T. Takata, 227th ACS National Meeting, Polym. Prepr. 45(1), 832-833 (Anaheim, USA, 2004).
- [Invited] Control of micellar size and critical micelle concentration for nonamphiphilic diblock copolymers in hydrogen bond cross-linking induced micellization. E. Yoshida, M. Ohta, Y. Terada, 7th International Symposium on Polymers for Advanced Technologies (Ft. Lauderdale, USA, 2003).
- Hydrogen bond cross-linking induced micellization of poly(vinylphenol)-block-polystyrene and poly(vinylphenol-ran-styrene). E. Yoshida, A. Hironaka, M. Ohta, 225th ACS National Meeting Polym. Prepr. 44 (1), 685-686 (New Orleans, USA, 2003).
- Micelle formation of poly(4-pyridinemethoxymethylstyrene)-b-polystyrene in nonselective solvents using dicarboxylic acids. E. Yoshida, M. Ohta, 225th ACS National Meeting, Polym. Prepr. 44(1), 693-694 (New Orleans, USA, 2003).
- Preparation of micelles having dyes and UV absorbents in their cores and/or coronas through hydrogen bond crosslinking. E. Yoshida, S. Kunugi, 224th ACS National Meeting,
- Polymeric Materials, Science & Engineering, 87, 136-138 (Boston, USA, 2002).
- Micelle formation of non-amphiphilic diblock copolymers through noncovalent crosslinking. E. Yoshida, 221st ACS National Meeting, Polymeric Materials, Science & Engineering, 84, 543-544 (San Diego, USA, 2001).